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ABSTRACT
I describe an extension to the melody matching system used in
Gersic [7]. The system takes user input in the form of a sung or
hummed query recorded through a microphone. Once recorded,
the query is transcribed into a string of quantized MIDI notes
which are matched to a series of similarly transcribed audio files.
The matching process is executed by means of a local-alignment
edit distance algorithm. The extension described here leaves the
system intact, but adds a diatonic key-finding system between the
transcription and matching processes. Once the diatonic key of a
query has been discerned, this information can be used to reduce
transcription or singing errors.

1. INTRODUCTION
The sale of music on the Internet is a multi-million dollar industry
which has made it possible for a vast array of music to be
available to the average household without the buyer having to
leave the comfort of their home. The iTunes music store alone
offers more than one million songs available for download, and
the ability to quickly and accurately find a song is important to the
business model. Searching through one million songs can be easy
if the user knows the name of the song or the artist, but can be a
daunting task if this information is not known. Birmingham et al
[1] contend that music search engines are hindered by their use of
meta-information for searches instead of musical content, which is
the information with which consumers are most familiar.

To hear a song on the radio and be able to sing that song into a
microphone in order to identify and purchase it could make for a
significant increase in sales of music online. However, the quality
of current query-by-humming systems fall somewhat short of
being useful in a commercial environment. A commercially viable
system must be able to quickly search a large database of songs,
and contend with a wide variety of vocal performance abilities. If
a user of a query by humming system sings perfectly on pitch into
a high-quality microphone, they have a much better chance of
getting good results. However, most users are more likely to do a
poor job of singing on pitch, and will sing into a low-quality
microphone. Dealing with the issue of query-quality is a necessary
task for developing a system which is useable on a large scale. I
demonstrate a system which attempts to detect a diatonic key for
the query, and to subsequently use that key information to modify
the transcription in order to remove likely pitch errors.

2. SYSTEM DESCRIPTION
The system I describe is in five parts: the data set, the
transcription system, the key-finding system, the key-based error
reduction system, and the matching system. The data set consists
of stored monophonic recordings of main themes for popular
songs. This data set is queried by a user, who sings or hums a
melody into a microphone. The user’s query is transcribed into a
series of frequencies by the praat-pd algorithm [2], and these
frequencies are then quantized both in time and in frequency into

a series of MIDI pitches according to the rules of equal
temperament. These MIDI pitches are then analyzed to find a
diatonic key, and the key information is used to modify the
transcription so that transient out of key pitches are moved to fit
into the key.

Figure 1. Music Matching System Diagram
Once the transcription has been modified, it is matched against
transcriptions of stored musical motives in an effort to find the
stored file most similar to the query file.

2.1 Pitch Tracking and Quantization
Pitch Tracking was accomplished through the use of the praat-pd
algorithm, coded by Mark Bartsch, modified by Bryan Pardo, and
based on praat by Paul Boersma [2]. The algorithm works by
windowing a signal in the time domain in order to determine the
period and harmonicity (harmonics to noise ratio) of a sound.
Boersma shows this method to have an accuracy and reliability
greater than that of frequency-domain methods, and to return
good results for sounds up to 80% of the Nyquist frequency.
Specific input settings for the praat-pd algorithm are the same as
in Gersic [7].

The praat-pd algorithm returns a list of frequencies for each
window, so in order to limit the total amount of data, frequencies
are quantized to MIDI pitches. A simple formula for converting
from frequency to MIDI pitch is used in accordance to the rules of
equal temperament. Additionally, the series of pitches is quantized
in time by detecting the attack transients of each note sung. To do
this, the discrete derivatives of the praat-pd frequency path and
the autocorrelation (harmonicity) path are calculated. New notes
occur whenever the frequency or harmonicity changes positively
to a greater degree than the average change in frequency or
harmonicity throughout the transcription. This method works
better with sung recordings, as opposed to hummed, because the
attack transients caused by the consonance of each word make
much larger changes in frequency and harmonicity. Once starting
points are determined for each note, the average of the frequencies
between starting points is used to determine the frequency for
each note.



2.2 Edit-distance Alignment
The edit-distance alignment algorithm is a method taken from
Durbin et al [4]. This method, shown by Uitdenbogerd and Zobel
[10] to be effective and efficient for melodic theme matching,
compares two strings in an attempt to determine how similar they
are to each other by calculating the number of substitutions
necessary to change one string into the other. The edit-distance
algorithm generates a matrix of data that can be used to determine
either a global-alignment value or a local-alignment value. Local-
alignment values, with a match reward of 15 and a skip cost of 2
were found to give the best results in Gersic [7], and are used in
all trials here. With this algorithm, higher numbers indicate better
matches, and values are normalized to a range between 0.0 and
1.0 (1.0 is a perfect match). Normalization is accomplished by
dividing the match score by the product of the size of the shorter
of the comparison strings and the match reward setting.

2.3 Krumhansl & Schmuckler Key-finding
The Krumhansl and Schmuckler key-finding algorithm [8] [5] is
based on key profiles established through empirical work by
Krumhansl and Kessler [9]. The key profiles were obtained
through a sequence of experiments where a tonal center was
established by playing an incomplete diatonic scale or chord
sequence, and followed in turn by each of the twelve chromatic
pitches. Participants were asked to rate how well each pitch fit the
established tonal center. In the algorithm, key profiles are
correlated with the pitch-class distribution of the transcriptions.
Each pitch-class is weighted by its duration throughout the
recording, and the algorithm returns the diatonic key with the
highest correlation rating. The algorithm has the effect of
returning keys based on the relative popularity of certain pitches
throughout the transcription. For instance, for most of western
music, if a piece is in the key of C, the most popular pitch-class
will be C, followed by G and E. Other scalar pitches (D, F, A, and
B) follow, and the least likely pitches to occur are ones that fall
outside of the key, such as Db, Eb, or Ab.

2.4 Spiral Array CEG Key-finding
The Spiral Array Center of Effect Generator (CEG) algorithm [3]
[6] is an alternate key-finding algorithm which has been shown to
return more accurate results than the Krumhansl and Schmuckler
method. Prior to key-finding, a set of key-profiles are determined
for each of the 24 major and minor keys. Notes are arranged
around a three-dimensional spiral in ascending perfect fifths so
that major-thirds are vertical neighbors, and perfect fifths are
horizontal neighbors around the spiral. Key profiles are
determined by finding the center of effect for each of the tonic,
subdominant, and dominant chords. Those three centers of effect
are then used to find the center of effect of the key. Once these
profiles have been determined, the key of a selection is computed
by plotting pitch-classes along the spiral, weighting them by the
cumulative duration for each class, and finding the center of
effect. The key profile with the closest center of effect to the
selection’s center of effect is returned as the key of the selection.

2.5 Human Key-finding
To provide for a basis of comparison, and to evaluate the
performance of the Krumhansl and Schmuckler and Spiral Array
CEG algorithm apart from the performance of the key-based error
reduction system, each of the recordings in the corpora were

analyzed by a semi-professional musician in order to determine
how well the system works with an alternate key finding
mechanism. The musician, who is also the author, has more than
twenty years of formal musical training. Each piece in the corpora
was transcribed by hand, and diatonic keys were chosen and
stored in a lookup table for use by the key-finding system. This
method had the result of returning much more consistent keys for
alternate recordings of pieces than did the Krumhansl and
Schmuckler or the Spiral Array CEG algorithm. One likely reason
for this is that the transcribed selections were short, and since they
were monophonic, they contained too little harmonic information
for the algorithms to work optimally.

Table 1. Comparison Between Krumhansl & Schmuckler
Algorithm, Spiral Array, and Human Key-Finding

Song K&S Spiral Human

99 Red Balloons v1 words F Minor C Major F Major

99 Red Balloons v1 nowords C# Major F Minor F Major

99 Red Balloons v2 words E Major D# Major F Major

99 Red Balloons v2 nowords D Major A# Major F Major

2.6 Diatonic Key-based Error Reduction
Once the key of a selection is determined, it is necessary to apply
the key-profile to the transcription in order to reduce errors caused
by incorrectly sung pitches. To do this, major and minor key
profiles are defined by interval relations. The tonic of the scale is
set equal to the key determined previously during key-finding.
Further steps of the scale are defined by adding intervals to the
tonic. Pitch-classes are arbitrarily assigned a number, where C is
equal to 1, C# is equal to 2, etc.. If the selection is in the key of E,
then the tonic is set to 5, and the next step of the major or minor
scale is 5 plus 2, which is F#. The rest of the key profile is defined
in this manner. After the key-profile is determined, it is compared
with the transcription in order to find pitches that are outside of
the key. While western music does allow for pitches which are out
of key, they are relatively less common than in-key pitches, so
they are assumed to be more likely to have been sung or
transcribed incorrectly. Two different error-reduction techniques
are described.

2.5.1 Neighbor-Pitch Substitution
As each pitch is considered in turn, any out-of key pitches are
replaced by either the preceding in-key pitch, or if the pitch
currently being considered is the first pitch, the closest pitch, as
defined in section 2.5.2.

2.5.2 Closest-Pitch Substitution
Out-of-key pitches are analyzed in order to determine if they were
sung flat or sharp. Since pitches are quantized to MIDI notes
before comparison, tuning information is lost. For instance, if a
user sings a middle C, the system will represent it as MIDI note
60. However, if the pitch were not quantized when converted from
frequency, and were sung sharp, it may actually have been closer
to 60.4. If a sung-pitch is determined to be out of key and sharp,
that pitch is replaced by the next pitch up the chromatic scale. If a
sung-pitch is determined to be out of key and flat, that pitch is
replaced by the next pitch down the chromatic scale. Since an out-
of-key pitch is only one half-step away from being in-key in either
direction of a diatonic scale, moving it one half-step upwards or
downwards ensures that it will become an in-key pitch.



It was hypothesized that limiting the number of pitches available
to be replaced would result in better performance. This takes into
account the possibility that the diatonic key could have been
determined incorrectly, or that a short modulation may have
occurred in the music. It is important to distinguish between
intentional and accidental out-of-key pitches, so two different
limit criteria are tested. The first is based on the duration of the
pitch in question, when compared with the average duration of
pitches in the selection. Only pitches less than one-fourth or one-
eighth (depending on the trial) the duration of the average are
replaced. The second limit criteria is the degree to which the pitch
is sharp or flat. Since the quantization process rounds the results
of the conversion from frequency to MIDI pitch, a pitch can be up
to 50% sharp or 50% flat without being considered a different
pitch by the transcription system.

3. EXPERIMENTAL SECTION
Three different key-finding methods are tested and compared. In
addition, error-reduction techniques are compared.

3.1 Corpora Construction
Two corpora were used during experimentation. Corpus A is
exactly the same as is described in Gersic [7]. It consists of forty
recordings of four different pieces, each recorded five times with
words and five times without words. The four pieces are: 99 Red
Balloons; the Gilligan’s Island theme song; Allouette; and Jingle
Bell Rock. 99 Red Balloons and Gilligan’s Island were recorded
by a 26 year old male with a Labtec AM-240 unidirectional
electret microphone with a frequency response from 100 to 16000
Hz. These songs were recorded with Matlab 7.0 (R14), and
linearly encoded as a PCM waveform with a sampling rate of
11025 Hz, and a bit depth of 16 bit. Allouette and Jingle Bell
Rock were recorded by a male in his late 30’s. These songs were
also linearly encoded as a PCM waveform, with a sampling rate of
8000 HZ, and a bit depth of 16 bit.

Corpus B extends and includes Corpus A. It consists of one-
hundred recordings of ten different pieces. Each piece is recorded
five times with words and five times without. In addition to the
forty recordings from Corpus A, Corpus B also contains My
Favorite Things, Let it Be, Love Me Tender, My Girl, Stand by
Me, and We Three Kings of Orient Are. The additional pieces
were sung into a Shure SM-57 microphone by a 26 year old
female with a BA in vocal education. They were recorded with
Syntrillium Cool Edit, and linearly encoded as a PCM waveform
with a sampling rate of 11025 Hz, and a bit depth of 16 bit. The
average length of the sound files in Corpus A is 4.81 seconds, and
the average length of the sound files in Corpus B is 11.38
seconds. All files were recorded as monaural files.

3.2 Evaluation method
Two different evaluation methods were considered. For each trial
a data set was created by comparing each file with every other file
in the corpus in order to determine edit distance scores. Since
both corpora contained multiple recordings of the same song,
sung by the same person, the first evaluation method was to
compare the average score generated for matches of songs that
were the same versus the average score for songs that were
different. Since the scores were quantized to a range from 0 to 1,
scores for recordings of the same song should be closer to 1 than
scores for different songs. For instance, the similarity rating for 99

Red Balloons: take 1 (with words) compared to 99 Red Balloons:
take 4 (without words) should be closer to 1 than the similarity
rating for 99 Red Balloons: take 1 (with words) compared to
Jingle Bell Rock: take 2 (with words). Ratios of same scores to
different scores (S:D) are used as a basis of comparison.

The second evaluation method was to determine whether a user’s
query to the system would yield a correct answer. A correct
answer is defined as the system returning the highest score for a
recording of a song that was the same as the query song. For
instance, if recording #1 of 99 Red Balloons was the query song, a
correct answer would be recording #4 of 99 Red Balloons, but an
incorrect answer would be recording #2 of Jingle Bell Rock. The
percentage of correct matches (POCM) is used as a basis of
comparison.

3.3 Results
Baseline results for Corpus A are set equal to the best results from
Gersic [7]. Optimal edit-distance settings were able to yield a
same-to-different (S:D) ratio of 1.732807 and a percentage of
correct matches of 85%. Since Corpus B contained more
recordings, baseline scores were somewhat lower. Using the same
edit-distance settings as with Corpus A, the Corpus B baseline
S:D ratio was 1.741765, and the POCM was 68.00%. Results
within each corpus which are better than these are considered to
be an improvement to the system.

Neighbor-pitch substitution yielded worse than baseline results
with all three key-finding methods, and will not be discussed
further. Closest-pitch substitution yielded promising results in
several trials. The best overall results were obtained on Corpus A,
using the human perception lookup table, modifying out-of-key
pitches through closest pitch substitution, limited by duration to
one-fourth the average duration of the pitches in a transcription.
This resulted in a S:D ratio of 0.746953, and a POCM of 90.00%.
With Corpus B, the highest S:D ratio of 1.931979 was obtained
through using the human key-finding method, closest pitch
substitution, with no limits placed on which out-of-key notes are
able to be replaced. However, this yielded a POCM lower than
baseline, at 67.00%. None of the Corpus B trials were able to
yield a higher than baseline POCM. This is potentially the result
of the higher quality vocals in the extra Corpus B files, when
compared to the Corpus A files. They were sung by a vocalist who
was instructed to sing without any vibrato, so the pitch of the
extra files in Corpus B is both very accurate and very steady,
leaving few errors for the key-based error reduction system to
remove. It seems that error reduction is best performed on a data
set that contains errors. This is an area for further study.

The use of the Krumhansl and Schmuckler algorithm yielded
worse than baseline results in all trials. Human perception results
were the best overall, but the Spiral Array algorithm also
performed well. With closest pitch substitution, limited by a
duration of one-quarter the average duration, the S:D ratio of
1.859529 was the highest of all Corpus A trials. In addition, aside
from the human perception trial mentioned earlier, the Spiral
Array was the only method able to raise the POCM above
baseline. With closest-pitch substitution on Corpus A, limited by
degree of intonation, the Spiral Array algorithm raised the POCM
to 87.50%.



3.4 Analysis
Of the three key-finding methods tested, human perception scored
the highest, while the Krumhansl algorithm scored the lowest.
This suggests that the Spiral Array algorithm, in accordance with
Chew [9], does indeed produce results closer to human perception
with short sequences of notes. To determine why the Spiral Array
algorithm returned better results in this system, a statistical
analysis was performed on the edit distance scores between the
scales of the keys returned for human perception when compared
to the Krumhansl and Schmuckler algorithm and for human
perception when compared to the Spiral Array algorithm. For
instance, if human perception returned a key of F Major, and the
Krumhansl and Schmuckler algorithm returned a key of F Minor,
the edit distance was calculated for the scales [F, G, A, Bb, C, D,
E] and [F, G, Ab, Bb, C, Db, Eb]. Scales with more similar pitch-
classes will have higher edit-distance scores. Human perception
yielded the best results in this study, so it was used as the basis of
comparison between the algorithms. Edit distance input settings
were the same as used for comparison between files earlier in the
study.

It was hypothesized that the average, normalized edit distance
between the Spiral Array algorithm and human perception would
be closer to 1 than the average edit distance for the Krumhansl
and Schmuckler algorithm. This would indicate that the keys
returned by the Spiral Array algorithm were more similar to the
keys returned by human perception than those returned by
Krumhansl and Schmuckler. Interestingly, this was not the case.
The average edit distance for the Spiral Array when compared to
human perception was 0.595298, whereas the average edit
distance for Krumhansl and Schmuckler when compared to
human perception was 0.526548. This seems to suggest that the
Krumhansl and Schmuckler algorithm returned keys more similar
to human perception than did the Spiral Array algorithm.
However, the standard deviation of the keys returned for the
Spiral Array algorithm was lower than that of Krumhansl and
Schmuckler. This seems to suggest that while the Krumhansl and
Schmuckler algorithm returned results more similar to human
perception, the Spiral Array algorithm returned more consistent
results. It would appear that the query by humming system is
aided more by a consistent key-finding algorithm than by one that
more closely mimics human perception.

4. CONCLUSIONS AND FUTURE WORK
Several trials yielded promising results for error reduction models
based on diatonic key-finding. Human perception yielded the
most consistent results, and also the highest increase in POCM
score. This shows that error reduction models based on correct
key information do indeed raise the accuracy of a query-by-
humming system. The accuracy of the Krumhansl and Schmuckler
algorithm proved to be insufficient to aid the system, but the
Spiral Array CEG algorithm was able to produce good results
when the keys being replaced were limited by the degree to which
they were out of tune. The best results required that replaceable
pitches be at least 5% out of tune in order to be replaced, but

requiring that pitches be more than 20% out of tune limited the
benefit of the error-reduction system too greatly to be useful.

For future work, a more consistent key-finding algorithm would
be most beneficial to the system. When comparing selections that
are in the same key, a good key-finding algorithm should return
the same key most of the time. In a query-by-humming system,
however, the errors produced by the query process are enough to
make the algorithm less effective. A more error-tolerant version of
the Spiral Array CEG algorithm would benefit the system.
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