Music Melody Matching Machine

Thomas Gersic
Northwestern University

http://www.gersic.com

ABSTRACT

I describe a simple computer-based melody matching system,
based on comparing short monophonic audio recordings of pieces
of tonal music. The process starts with the user singing a piece
that they would like to identify into a microphone. The system
then attempts to transcribe the recording from its audio
representation into a string of quantized MIDI notes. For
simplicity, the matching algorithm has been limited to just pitch
data, but a more complete system would employ rhythmic and
dynamic data as well to more accurately match pieces of music.

1. INTRODUCTION

The sale of music on the Internet has blossomed from relative
obscurity to a multi-million dollar industry in the two short years
since Apple launched its iTunes service. A number of other
services, most notably Napster, have attempted to compete with
Apple, but few have had success. One potential reason for this is
that none of the competing services offer anything substantially
different from what Apple has to offer, so current iTunes users
have little reason to switch services. Prices are largely fixed by the
record industry, so lowering prices is not an option, but one way
to compete is with a significant improvement to the search
technology. One issue discussed by Birmingham et al. [1] is that
current music search engines use meta-information such as song
title or performer, not on the content of the music, which is the
information with which consumers are frequently more familiar.
The system described in this paper attempts to match musical
queries, sung into the system, with stored pieces of music by
comparing musical content.

The system described here is an approach to comparing and
grouping audio files by melodic content, based on a simple pitch
tracker and an edit-distance based string matcher. I test various
edit-distance settings for match reward and skip cost, as well as a
comparison between global and local alignment methods. I also
attempt a system of diatonic key finding based on the Krumhansl-
Kessler algorithm [2], supplied by MIDI Toolbox version 1.0 [3].

Several approaches to music matching systems have been tried in
the past. The MusArt Music-Retrieval System, proposed by
Birmingham et al. [1] in February 2002, is a system that attempts
to match an automatically generated transcription of a sung or
hummed query to a database of stored MIDI files. The system
uses a “stochastic representation of music”, by employing the use
of hidden Markov models for both the query and the stored
themes.

Another system, proposed by Uitdenbogerd and Zobel [4]
compares polyphonic MIDI files by attempting to discern the
melody line, and then comparing the files based on similarity
between these melodies. They attempt a number of different

methods for determining the melody line, but find that taking the
highest note starting at any time yielded the best results.
Uitdenbogerd and Zobel also compare two different approaches to
matching strings in a similarly designed music retrieval system: n-
gram count commons and edit distance local alignment. They find
the best results with local alignment, and so I have chosen to use
local alignment over n-grams or hidden Markov models.

The system I describe here is a matching system based on the best
methods that have been tried in past literature. Through these
methods, I have developed a working system whose accuracy is
very promising.

2. SYSTEM DESCRIPTION

The melody matching system I describe here is in three main
parts: the data set, the transcription system, and the matching
system. The data set consists of stored monophonic recordings of
main themes for popular songs. This data set is queried by a user,
who sings or hums a melody into a microphone. After the user has
recorded their query, it is transcribed into a series of frequencies
by the Praat-PD algorithm [5], and these frequencies are then
quantized into a series of MIDI pitches. A matching algorithm is
performed on the pitches deemed to be most significant, and a
number of different measures of significance are attempted and
compared.

Figure 1. Music Matching System Diagram

Audio File Transeription
[rata Set ¢
Matching System

2.1 Pitch Tracking and Quantization

Pitch tracking was accomplished with the praat-pd algorithm,
coded by Mark Bartsch, modified by Bryan Pardo, and based on
praat by Paul Boersma [5]. The algorithm works through
windowing a signal in the time domain in order to determine the
period and harmonicity (harmonics to noise ratio) of a sound.
Boersma shows this method to have an accuracy and reliability
greater than that of frequency-domain methods, and to return
good results for sounds up to 80% of the Nyquist frequency.

The praat-pd algorithm allows for a number of input settings that
determine how the algorithm functions, which affects the output
results. For this system, the distance between window centers was
set to 0.01 seconds, which is significantly faster than an average
human is likely to be able to sing a sequence of notes. This is
necessary because a longer time between windows would
potentially miss notes that occurred at the edges of the window.
The minimum and maximum allowable frequencies were set to 65
Hz and 1000 Hz respectively because most of the energy of the
human voice is concentrated below 1000 Hz, especially the
energy of vowels, which contain most of the pitch information
that we’re extracting. Voice threshold and silence threshold,
which set the autocorrelation strength that the algorithm uses to
determine harmonic sound and silence were set to 0.5 and 0.02
respectively. Defaults were used for the rest of the settings.

Once the praat-pd algorithm determined a series of frequencies by
analyzing the raw PCM data, it was necessary to limit the total
amount of data by quantizing it to musical pitches and time
segments. For convenience, MIDI pitch numbers, with middle C
equaling the number 60, were used to represent the musical pitch
of each frequency. A simple formula for converting from
frequency to MIDI pitch was used (the reference point of A440 =
69 was used because that pitch is commonly used as the basis for
equal temperament):

frequency)
log 440

round 12" logi2) +59

Once pitch was determined, an array was created that contained
the distance of each note, in half steps, from the first note in the
sequence. This relational method of representation allowed for the
comparison of strings between keys without the key being a factor
in the comparison.

In addition to quantizing to musical pitch, properly quantizing the
sequence of frequencies in time proved to be very important for
getting good results from the matching system, so a number of
different methods were attempted. Most significantly, the discrete
derivatives of the frequency path and the autocorrelation path
were calculated in order to determine starting points for new
notes. Based on graphical representations of praat-pd
transcriptions of the human voice, the assessment was made that
intentional changes in pitch are frequently associated with short-
term, large jumps in both frequency and harmonicity. This effect
is the result of transients in the recording caused by vocal
consonants. Because of this, the effect is more pronounced in
recordings where the user has sung words instead of humming.

Once the derivatives were calculated, I determined the average
difference between successive values in order to compare each
value to it. Doing this allowed me to determine where the
significant peaks were in the derivative array without having to

make an assumption that peaks would be over a certain static
level. Peaks were then determined to be any non-zero frequency
value with a frequency or harmonicity value over the average
frequency or harmonicity values. Once starting points were
determined for each note, the average of the frequencies between
that starting point and the next starting point was used to
determine the frequency of the note. In this system, for simplicity,
time (rhythmic) information was not used, but a future system
should make use of this information in order to better match
melodic themes.

In addition to this, a number of different methods were tested to
quantize the sequence of notes further. Firstly, the assumption was
made that pitch changes occurring very quickly are most likely to
be the result of a singer “scooping” up to, or down to an intended
pitch. Because of this, these quickly changing pitches were
determined to be unimportant, and were removed from the
transcription array, with only the last pitch remaining from any
group of quickly changing notes.

Secondly, two different experimental methods were introduced to
the system. An FIR lowpass filter was introduced between the
linearly encoded PCM vector, and the praat-pd algorithm. The
reasoning behind trying this was with the hope that the algorithm
would find harmonic values better if high-frequency values were
gently attenuated. This method, however, had the effect of
removing too many transients, and significantly reduced the
effectiveness of the derivative calculation method discussed
earlier. Because of this, no further testing was done. The second
experimental method was the introduction of a diatonic key
finding algorithm, based on the Krumhansl-Kessler algorithm [2],
supplied by MIDI Toolbox version 1.0 [3]. A comparison
between using the key finding algorithm and not using it is given
in the results section.

2.2 Edit-distance Alignment

The Edit-distance alignment algorithm is a method taken from
Durbin et al [6]. This method, shown by Uitdenbogerd and Zobel
[4] to be effective and efficient for melodic theme matching,
compares two strings in an attempt to determine how similar they
are to each other by calculating the number of substitutions
necessary to change one string into the other one. The Edit-
Distance algorithm generates a matrix of data that can be used to
determine either a global-alignment value or a local-alignment
value. Both values are tested here. With the algorithm used,
higher numbers indicate better matches, and values are
normalized to a range between 0.0 and 1.0 (1.0 is a perfect
match).

2.3 Krumbhansl-Kessler Algorithm

The Krumhansl-Kessler algorithm was used to determine the key
of each transcription. This algorithm works by analyzing the
relative popularity of each pitch, and comparing it to a table of
weighting values for each step in the diatonic scale. For instance,
a recording with a most popular pitch of C (the tonic), and second
most popular pitch of G (the dominant), is likely to be in the key
of C (major or minor). The key determined by this algorithm was
then used to assess the likelihood that pitches in the transcription
were correct or incorrect. Pitches determined to be out of the key

were then changed either to be equal to the previous pitch, or to
the closest diatonic pitch, depending on how close in frequency
the pitch in question was to the previous pitch.

3. EXPERIMENTAL SECTION

The melodic matching system was tested by evaluating how well a
recording could be matched to another recording of the same
piece, and how well it would discriminate between correct
matches and incorrect matches.

3.1 Corpus Construction

Forty different recordings were used for the experimental corpus,
and are available at http://www.cs.northwestern.edu/~teg196/.
These recordings were of four different pieces, each recorded five
times with words and five times without words. The four pieces
were: 99 Red Balloons; the Gilligan’s Island theme song;
Allouette; and Jingle Bell Rock. The first two songs were recorded
by a 26 year old male, with a Labtec AM-240 unidirectional
electret microphone with a frequency response from 100 to 16000
Hz. These songs were recorded with Matlab 7.0 (R14), and
linearly encoded as a PCM waveform with a sampling rate of
11025 Hz, and a bit depth of 16 bit. The second two songs were
recorded by a male in his mid 30’s. These songs were also linearly
encoded as a PCM waveform, with a sampling rate of 8000 HZ,
and a bit depth of 16 bit. All files were recorded as monaural files.
The files had an average length of 4.81 seconds.

3.2 Evaluation method

Two different evaluation methods were considered. Both were
based off of a data set created by comparing each file with every
other file in the corpus to determine edit distance scores. The first
evaluation method was to compare the average score generated for
“same” matches versus the average score for “different” matches.
Since the scores were quantized to a range of 0 to 1, scores for
different recordings of the same song should be closer to 1 than
scores for those that are different songs. The second evaluation
method was to determine whether a query to the system would
yield a “correct” answer. A correct answer, in this case, would be
the system returning a filename for a song that was the same as the
query song. For instance, if recording #1 of 99 Red Balloons was
the query song, a correct answer would be recording #4 of 99 Red
Balloons, but an incorrect answer would be recording #2 of Jingle
Bell Rock.

3.3 Results

The experimental results were very good. A number of different
variables were tested in order to produce the best possible results
with this corpus of data. Variables tested were the value settings
for edit distance match reward and skip cost, local versus global
alignment, and whether or not the key-finding algorithm was
used. With a total of 16 different test runs, I determined that a
match reward of 15, a skip cost of 2, using local alignment, and
not attempting to find the key yielded the best results. These
values gave an average score between ‘“same” files of
approximately 0.373 and an average score between “different”
files of 0.220. The ratio between these scores is 1.694 : 1. These
settings returned 34 out of 40 correct matches, for an accuracy of
85.00%, which 1is significantly better than chance (25%).
Substituting global alignment for local alignment raised the ratio
significantly to 4.173 : 1, but the percent of correct matches was

reduced to 80.00%. The key finding algorithm raised the average
scores for both “same” and “different” matches, but reduced the
system’s accuracy in most cases.

Table 1. Partial Experimental Results

Full Results: http://www.cs.northwestern.edu/~teg196/teg196_testResults.xls

Reward | Cost | LOVGIObaL | (8 | Rt | Matehes
15 2 Local NoKey | 1.694 85.0%
15 2 Local Key 1.579 67.5%
15 1 Local NoKey | 1.663 85.0%
2 8 Local NoKey | 1.464 57.5%
15 2 Global NoKey | 4.173 80.0%

4. CONCLUSIONS AND FUTURE WORK

The results of this experiment are promising. Using a small data
set, and minimal post-processing of transcription data, relatively
good results were returned from the matching algorithm. The
biggest issue found was correctly quantizing the frequencies into
pitches that were representative of the pitches that the user
intended. The average person does not sing intervals perfectly, nor
do they sing with a perfectly steady pitch, so significant work
must be done to weed out values which are not intended to be
considered as part of the melody. The diatonic key finding
algorithm was an attempt to deal with these issues, but for the
most part did not yield good results. The problem may have been
that with such short segments, the key returned was not the correct
key for the piece, resulting in corrupted data.

Future work in this area should concern the research of better
ways to quantize the transcription data into strings that are more
similar for songs that are supposed to be the same, and more
different for songs that are supposed to be different. The diatonic
key finding algorithm yielded some promising results, but for the
most part it just made matters worse. Further testing is needed to
determine exactly how best to use it. Rhythmic information was
also left completely out of this system, and could prove to be
pivotal in correctly matching two pieces to each other. Another
area of improvement would be to have a system that would know
and expect common errors, and while matching, would punish
those less than other errors. A piece could be matched to another
piece even if the two transcriptions have a significant number of
errors, presuming that those errors fall into the set of expected
errors, such as minor pitch fluctuations.

5. ACKNOWLEDGMENTS
Thanks to Bryan Pardo.

6. REFERENCES
[1] Birmingham, William et al. The MusArt Music-Retrieval
System. D-Lib Magazine, (February 2002).

[2] Krumhansl, C. L. Cognitive Foundations of Musical Pitch.
New York: Oxford University Press, (1990).

(3]

Eerola, T. & Toiviainen, P. (2004). MIDI Toolbox:
MATLAB Tools for Music Research. University of
Jyviskyld: Kopijyvi, Jyviskyld, Finland. Available at
http://www.jyu.fi/musica/miditoolbox/.

Uitdenbogerd, Alexandra and Zobel, Justin. Matching
Techniques for Large Music Databases. Available at
http://www.cs.northwestern.edu/~pardo/machine_perception
_of_music/uitdenbogerd-acm-multimed-99.pdf

[5] Boersma, Paul. Accurate Short-Term Analysis of the
Fundamental Frequency and the Harmonics-to-Noise Ratio
of a Sampled Sound. Institute of Phonetic Sciences (1993).

[6] Durbin, Richard et al. Biological Sequence Analysis.
Probabalistic Models of Proteins and Nucleic Acids.
Cambridge University Press (1999). p. 12-27.

